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Abstract

Hingeless rotor frequency response calcula-

tions are obtained by applying a generalized har-

monic balance to the elastic blade flapping equa-

tions. Nonuniform, unsteady induced flow effects

are included by asmming a s_ple three-degzee-

of-freedom description of the rotor wake. i__s_lts

obtained by using var!____s models of elastic blade

bending and induced flow are compared with exper-

Imental data obtained free= a 7.5-ft diameter

tunnel model at advance ratios from 0.0 to 0.6.

It is shown that the blade elasticity and nonuni-

form, unsteady induced flow can have a signifi-

cant effect on the transient response character-

istics of rotor systems. Good correlation be-

tween theory and experiment is obtained by using:

(i) a single rotating mode shape description of

the elastic blade bending, (ll) an empirical form-

ula for the quasl-steady induced flow behavior,

and (lii) the apparent mass terms from potential

flow for the unsteady induced flow cheracterls-
tlcs.
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steady value of thrust coefficient,
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harmonic perturbation of thrust
coefficient

harmonic perturbation of roll moment
coefficient = roll moment/o_fl2R 5 ,

positive advancing blade down

harmonic perturbation of pitch

moment coefficient = pitch moment/

p_G2R5 , positive nose up

dimensionless flapping hluge offset

d_aansloeless radius of pocket

cutout

rotor blade bending stiffness,

ib-ft 2

generalized response vector

aerodynamic and inertial forces per

unit blade span, ib/ft

nondimensional harmonics of inertial

forcing function, Eq. (12)
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apparent inertia of air, slug-ft 2
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index referring to mode number
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number of flap bending modes

nondJ_n_sional apparent mass and in-

ertia of i_permeable disk
control feedback matrlx

nonuniform induced flo_matrtx

empirical value for quasi-steady

portion of [L]

rotor blade mass distribution, slug/ft

nondi_nsiona_ blade parameters

R #R

1 f m dr, 1_/0 mr 2 dr,
pacR 2 parR _

I/o"pacR 3 mr_j dr

rotor response matrix open loop,

closed loop

elemental apparent mass, slugs

el_antelmass flow, slugs/sec

apparent mass of air, slugs

index referring to harmonic number
number of azimuthal harmonics

null matrlx

first flap frequency divided by

generalized coordinates

steady values of qj
rotor blade radius coordinate, ft

rotor blade radius, ft

blade root moment, ft-lb

blade parameter

.R

pacR2 m#j dr

generalized control vector

<OoOsOcgogsgcXoXsXc>

perpendicular, tangentJ_t components of

air speed in undeformed blade coordi-

nste system, ft/sec

freestream airspeed perpendicular and

parallel to rotor shaft (V= positive

do_a),ft/sec

induced flow parameter =

[U2 + X(X + V)I/(u 2 +-_2)i12

blade root shear, ib

rotor blade flap deflection, ft

frequency transform, Eq. (23)

physlcal control vector <OoOs9cZ_a>

control coupling matrix

hub plunge deflection divided by R,

positive down

hub pitch angle, positive nose up,
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Lock number, i/myy
equivalent Lock number, Eq. (35)

blade pitch angle = _ + (8o + 8s

sin _ + 8c cos _)eim_

steady collective pitch angle

rotor pitch perturbations

total inflow (including induced flow)

= _ + lo + _s _ sin 0

r )eimO+ _c _ cos

steady inflow ratio = V=/_R +

inflow perturbations (including in-

duced flow), Eq. (i0)

advance ratio = U=/_R

total induced flow =

+ Vo + _s R sin 0

r ) eim_+ vc _ cos

induced flow due to steady rotor

thrust

induced flow perturbations

air density, slug/ft 3

rotor solidity, bc/_R

induced flow time constants, rad -I

hub roll angle, positive advancing

blade down, rad

orthogonal functions

rotor blade azimuth position, non-

dimensional time, rad

excitation frequency divided by

rotor blade angular velocity,

rad/sec

_/_r
_/_

The dynamic response characteristics of

hingelese rotors are dependent upon the distrib-

uted structural properties of the rotor blades,

the local aerodynamic properties of the blade

sections, and the detailed description of the

aerodynamic environment. It is generally be-

lieved, however, that reasonable predictions of

rotor thrust and moments at low lift can be ob-

tained by using some appropriately simplified

models for the blade structure, section aero-

dynamics, and inflow distribution. The develop-

ment of these simplified rotor models is useful

for gaining insight into the basic dynamic mech-

anisms of rotor response. Detailed calculations

of dynamic airloade, necessary for many applica-

tions, are usually too complex for use in basic

dynamic research or preliminary design calcula-
tions.

The formulation of a minimum complexity

rotor response model is the subject of several

recent papers. One area of interest is the ef-

fect of mode shape and mo_e number on rotor
flapping response. Shupe _ addresses the effects

of the second flap mode, Ormieton and Peters 2

compare various mode shape models for first and
second flap modes, and Hohenemser and Yin _ con-

eider the effect of using rotating rather than

nonrotating modes as generalized degrees of

freedom. The fundamental conclusion, as

clarified in Reference 3, is that for _ < 0.8 a

single rotating mode shape is adequate for model-

ing the steady rotor flapping response.

A second area of interest is the effect of

induced flow perturbations on rotor flapping

response. In Reference i, a simple momentum

theory predicts a significant effect of induced

flow on steady rotor response. In Reference 2, a

comparison of steady experimental and theoretical

results indicates that, although there is a sig-

nificant effect due to induced flow, momentum

theory is inadequate for predicting this effect in

forward flight. Alternate induced flow models are

introduced and compared with the data, but no

clear choice for the best model is found. In

Reference 4, an unsteady momentum theory is used

in hover to improve correlations with experimental

frequency response data.

The work in References i through 4 indicates

that a minimum complexity analytic model for

rotor dynamics must include appropriate degrees of

freedom for both structural and induced flow per-

turbations (certain flight dynamics programs

presently include a simplified dynamic treatment

of the induced flow5). Unfortunately, while some

success has been achieved using simple models of

the rotor induced flow in hover, a completely

satisfactory induced flow model for forward flight

has not been found, not even for the condition of

steady response. In addition, neither the phy-

sical values of the induced flow time constants

nor the frequency range in which they are impor-

tant is known. The unsteady behavior of the in-

duced flow contributes directly to the low fre-

quency rotor control characteristics and to the

coupled rotor/fuselage aeroelastic stability. In

particular, induced flow perturbations contribute

to the rotor damping available in pitch and roll

(which is important for ground and air resonance

calculations). It is consequently important to

understand the dynamic characteristics of the in-

duced flow.

The purpose of this paper is to provide ad-

ditional insight into the question of rotor

structural and induced flow modeling. To this

end, experimental rotor frequency response data

in hover and in forward flight are compared with

theoretical results that are calculated by using

several different models for the elastic blade

bending and induced flow. The frequency response

data provide a broad base of comparison so that

the effects of mode shape and induced flow model

can be clearly determined throughout the fre-

quency range of interest.

Basic Equations

Analysis

The mathematical technique used here is a

further generalization of the harmonic balance

approach of Reference 2. In addition to an arbi-

trary number of bending modes (with an arbitrary

number of azimuthal harmonics for each mode), the

generalized harmonic balance allows for a



rational treat_mt of reversed flow aerodyna_cs

and the po_Ibillty of harmonically oscillating

control inputs.

The llv_z equation of motion for the de-
flection of an elastic beam subject to distrib-

uted loed s F(r,,)
and C(r,

" ( C )(EI_') + m_2_ + _2 mrw' - _' mr dr

- F(r,,) + G(r,_) (1)

The associated expressions for bending moment and

shear at the blade root are

R

S(0,,) = / (F + C - =_2_ _ =_2w) r dr (2)
O

R

V(O,,) = / (F + G - m32_)dr
0

(3)

The blade root bending moment is transformed into

a stationary coordinate system to yield the pitch

and roll moment of the rotor. The solution of

Eq. (1) yields directly the blade deflectlons,

and substitution into Eqs. (2) and (3) then

yields the forces and moments.

Application of the harmonic balance involves,

first of all, an orthogonal expansion of w:

J

= qJ (*)_t (r) (4)

J=l

For the present analysis, the _j are taken to
be the exact mode shapes of the rotatinsbeam

without aerodynamics. Galerkin's method is then

used to transform Eq. (i) into J ordinary dif-

ferential equations (with periodic coefficients)

for the modal coordinates qj.6 When the forcing

terms contain a steady portion superposed onto

periodic functions that are modulated by an ex-

citation frequency _ (cycles per revolution),

Floquet's theorem _lles that the qj have a
solution of the form I

= qj + + jn cos(n,)qj

n=l

+ bin sin(n,_ } ei_* (5)

where q_ are the steady coning displacements

and the Jajn and bin are complex quantities
indicating the magnltude and phase shift of each

modulated harmonic of the perturbation response.

The harmonic balance approach entails substltut-

ing Eq. (5) into the J ordinary differential

equations for qj and setting coefficients of

llke harmonics equal. When n is truncated at

the highest harmonic of interest N, then

(2 • N + 1) • J linear algebralc equations

are obtained for the a, and bin. Solution of
these equations, follm_ by a substitution of Eq.

(5) into Eqs. (2) and (3), results in the phase

and magnitude of all desired harmonics of the

flapping deflections and hub forces and moments.

Blede Loedin 8

The aerodynamic loading of each Llade is

given by

F = IUTI(UTe - Vp) (6)

where

UT = _r + _Ep sin , _,,m_

Up = _+_R_ +_pw' cos (8)

Eq. (8) contains the primary contributions of mode

shape and induced flow to the flapping equations.

The details of blade mode shape become important

as p increases because Up depends upon both

the blade deflection w and its first derivative

w'. The induced flow is important because first

order perturbations to the inflow X create first

order changes to Up and F.

Although the inflow is in general a compli-

cated function of radius and azimuth, as a first

approximation, the total inflow can be represented

by

A = _ + Iko + AS R sin * + kc _ cos _lei_ (9)

The steady portion of the total inflow _ con-

tains contributions from the freestream velocity

V=/_R and from the steady induced flow due to

rotor thrust v. The unsteady inflow colqxments

_o,_s,l c contain contributions from harmonlc

plunging ze i_*, rolling _e i_*, and pitchin E

ue _¥ of the shaft, as well as contributions

from the unsteady induced flow components

Vo,Vs,Vc due to perturbations in rotor thrust and
moments:

= 1l ° -i_z + v° pa

=
X s -J-_O + vs (10 a-c)

A = -i_a + V
C C

The blade pitch angle O is given by

8 ffi 8 + 1eo + 8s sin * + 0c cos *lei_ (ii)

where 8 is the steady value of 8 and

8o,8s,8 c are control system perturbations. The

inflow perturbations lo,ls,lc are assumed to be

3



small compared with unity. This implies that the

induced flow perturbations Vo,Vs,V c and the con-

trol perturbations eo,es,%,z,_,= are also small

quantities yielding linear perturbation equa-
tlons.

The inertial loading of each blade is given

by

g r r _]ei_G = -m_2R o + gs _ sin _ + gc _ cos (12)

where

go = _2z

gs = _2¢ + 2i_u (13 a-c)

gc " -2i_¢ + _2@

The inertial loading is a result of centrifugal,

Coriolis, and gyroscopic forces which occur in

the rotating reference frame of the blade due to

hub motions z,¢,u in the inertial reference

frame.

When Eqs. (6) through (12) are combined and

appropriately integrated in Eqs. (i), (2_, and

(3), the steady deflections and forces q_,CT/Oa

are obtained as linear functions of the steady

inputs e,A; and the perturbation blade deflec-

tions and hub forces and moments are obtained as

linear combinations of the generalized control

variables

<u>- <%%%gogsgc_o_s_c> (14)

Although go,gs,gc are simply related to the

shaft motion through Eq. (13), they are retained

as generalized controls so that the generalized

controls can be separated into physical, in-

ertial, and aerodynamic groupings. This will

facilitate the calculation of rotor response when

induced flow is included later.

Interpretation of Results

The results of the harmonic balance can be

expressed in matrix form as

{f}- [M](u} (15)

where {f} represents the perturbation harmon-

ics of thrust, moments, and generalized coordi-

nates. The elements of [M], therefore, have

direct physical significance. They are the par-

tial derivatives of each of the response harmon-

ics taken with respect to each of the generalized

controls u_. The generalized control variables

are in turn-functlons of the physical controls

xj,

<x> -<eoesecZ,_ > (16)

as evidenced in Eqs. (i0) and (13).

The generalized control varlables uj are

also coupled to the fj, because the thrust and

moments influence the induced flow. The induced

flow, therefore, is a feedback loop of Eq. (15),

causing the uj to depend upon the fj.

From the standpoint of calculation, it is con-

venient to express the coupling relation (between

the generalized controls, the physical controls,

and the rotor response) in matrlx form:

(u} = [Y](x} + [K]{f} (17)

Eq. (17) is simply a set of linear equations de-

scribing: (i) the generalized control perturba-

tions due to application of the physical controls

[Y] and (ii) the generalized control perturba-

tions due to the effect that rotor response has

on the induced flow [K]. The matrices [Y] and

[K] will he obtained later by using an appropri-

ate induced flow model. It follows that the par-

tial derivatives of the f_ with respect to the

physical controls x i can-be found (including in-

duced flow effects) _rom Eqs. (15) and (17). The

derivative matrix is designated [M'] and has the

properties

(f) = [M'](x} (18)

[M'] = [[I] - [MI[K]] -1 [MI[Y] (19)

Although the higher harmonics are often necessary

in the harmonic balance calculation of [M], the

subsequent calculation of [M'] by Eq. (19) may

be performed for only those response and inflow

harmonics of interest. In this paper, five har-

monics are used in the calculation of [M], but

only first harmonics are retained in Eqs. (18) and

(19), so that the fj are taken to be

C<_ CL CM i_<f> = oa aa aj0bjlaj (20)

Induced Flow

Form of Induced Flow Model

A u_eful form of the induced flow model is

given by _

= ILllCL/Ua (21)
[v_/ LJ[CM/Oa aerodynamic only

Although not completely general, Eq. (21) can

accommodate a variety of induced flow models.

Only aerodynamic contributions are included on

the right-hand side, because they are the only

loads which produce reaction forces on the rotor

wake. Using Eqs. (2) and (3), these aerodynamic

forces and moments can he expressed in matrix

form as



_/°e1

CLIUa _

%/°a)aer o-

dynsmic

0 0 go _
CL/oa+ _

0 - - Ji,ol
directly in Eq. (19) to obtain the complete rotor

response to physical control inputs.

Unstead 7 Momentum Theory

An approximation of the induced flow that is

suitable for Eq. (21) can be obtained as an °x-

! O
1o o IIa ol 2.  .differentialforceonenelemantalarenof

- [W] - _ bjl rotor dlsk is written as

- 2 myJj[ajl) dF = 2_I_ + _2a_dm (26)

where

(22) where 2_Ev is the total change in velocity nor-

real to the disk, dm is the differential mass flow

through the element, dm is the.apparent mass

associated wlth the flow, and v is the time

derivative of v in the nonrotating system. The

differential _a_s flow rclat!cn

0 0

[.] - ,2 2_ (23)
-21m co2

Wlth the induced flow v described by gqs. (21)

and (22), the inflow relatlon follows directly

fro,, Eqs. (i0), (13), and (21). The matrices

[Y] and [K] of Eq. (17) may then be identified

as

[Y] =

[K] =

m

I3x 3 O3x 3

03_ 3 [W]3x 3

m I0 0 1= 0 p

°3,_ [L]Ew] -_, - i_ 0

0 - _-m 0 i_

03x 3 OHx3j -I

03x3

[L]3x 3 -[L] [W]

03x3J

°Io- _yj 0

- _my
3x3J

(24)

(25)

Eq. (24) represents the control coupling be-

tween the physical controls xj and the general-

tzed controls u_. The presence of [L] in this
matrix indicates-that the X's are indirectly

coupled (through the induced flow), as well as

geometrically coupled [Eqs. (i0) and (13)] to the

rotor plunge, pitch, and roll motions. Eq. (25)

represents the induced flow caused by the de-

pendence of A upon the thrust and first harmon-

ic flapping. If a suitable approximation to the

inflow can be modeled In the form of Eq. (21),

then Eqs. (24) and (25) may be substituted

dm= 0_R_V/_+ A2 r dr d_ (27)

can be used to integrate the first term of Eq.

(26) over the dlsk to obtain a quasl-steady in-

duced flow relation for rotors that have combined

conditions of thrust and fo--_mrd speed. The eval-

uation of the second term in Eq. (26) (the un-

steady effect) requires the additional knowledge

of the apparent mass dm associated wlth the flow.

An approximation to the apparent mass terms

of a llftlng rotor can be made in terms of the

reaction forces (or moments) on an impermeable

disk which is instantaneously accelerated (or ro-

tated) in still alr. Thls approximation was used

in Reference 8, givlnE good agree°cut with trans-

ient thrust measurements for an articulated rotor.

The reactions on such an impermeable dlskare

given from potential flow theory in terms of el-

liptlc inteErals which are evaluated in the llt-

erature. 9 They result in apparent mass and in-

ertia values

8 16

"A = _ p_3 , zA =_pe 5 (28)

(For _ = Vo r/R, a radial velocity distribution,

m A - pR3.) These values represent 64 percent of

the mass and 57 percent of the rotary inertia of

a sphere of air having radius R. It is empha-

sized that they are only approximations to the

actual values for a lifting rotor.

Using this approximation, the steady induced

flow equation and the unsteady induced flow per-

turhatlon equations can be derived from Eqs. (26)

through (28):

%;0 + 2V_o= % ]

1 =
_s + _ V_s -%

(29a)

(29b--d)

5



where

v-- _2+_(_+5) (29e)

and

mA 8

..... 0.8488 i

Km - p_R 3 3_

IA 16

K I _ .... 0.1132
p_R 5 45_

(30a-b)

Eq. (29a) expresses the nonlinear relation be-

tween the steady thrust and the steady induced

flow v. Eqs. (29b-d) are then the linear per-

turbation equations for small changes in thrust,

moments, and induced flow. In order for the per-

turbation equations to he valid, it is assumed

that Vo,Vs,V c are much smaller than (_2 + _2)½.

The time constants associated with the lnduc-

ed flow model in Eq.(29) are

K

= m = 0.4244/v (for Vo) I

TT 2v

2K I

TS = --=v 0.2264/v (for Vs,Vc)

(31a-b)

In Reference 4, the steady induced flow _ and

the time constant for Vs,_c are obtained by

correlating experimental hover frequency response

data. Two operating conditions are considered,

and the best fit in these cases is found to be

= .014, Ts = 8 (with O = 2 °) and _ = .028,

T s = 4 (with 0 = 8°). From the _ values indi-

cated for these cases, it can be shown that each

_s implies the same value of K I = 0.112. Thus,

there is some experimental evidence that the po-

tentlal flow value K I = 0.113 is approximately
valid.

By assuming simple harmonic motion, Eqs.

(29b-d) can be brought into the form of Eq. (21),

yielding the components of [L]

momentum theory.

oa

2v + K i_
m

[L] = 0

0

v/2 + Klim

0

for unsteady

0

0 (32)

-oa

v/2 + Kli_ _

(L22 and L33 differ by a factor of 4/3 from Ref-

erence 2, because 9 s and 9c are taken uniform

wlth r in that reference, whereas they are

taken linear with r here.) The matrix [L]

from Eq. (32) may now be substituted into Eqs.

(24), (25), and (19) to obtain the rotor response

that includes inflow.

Empirical Model

Experimental data have shown that momentum

theory, although particularly simple to use, is

qualitatively inaccurate for certain steady re-

sponse derivatives in forward flight. 2 Reference

2 introduces an alternate induced flow model for

forward flight in which the elements of [L]

(with _ = 0) are chosen to give the best fit of

experimental response data for several configura-

tions at conditions of near zero lift. If this

empirical inflow model, [LE], is taken for the

quasi-steady portion of the induced flow law, and

If the theoretical apparent mass terms (from po-

tential flow) are taken as a model for the un-

steady portion of the induced flow law, then a

complete induced flow equation can be expressed as

° io)IcJ° _K I =

o- [vo 
(33)

The assumption that the apparent mass terms

may be superposed on the quasl-steady terms is not

rigorous, but it can be considered analogous to

unsteady wing theory in which the apparent mass

terms are theoretically independent of the free-

stream velocity. Under the superposltlon assump-

tion, the empirical inflow model modified for the

unsteady case is

[i°0 Ill[L] = -K I i___+ (34)
oa

0 -K I

Although this particular formulation of [L] is

valuable for predicting the effects of induced

flow, ultimately a more consistent formulation of

[L] should be made, as discussed in Reference i0.

Equivalent Lock Number

Another method of accounting for the unsteady

induced flow is the use of an equivalent Lock num-

ber y*, which can be derived from a single har-

monic balance of the root moment equation:

_*= 1 - 1 (35)
y 1 + 8v/oa + 16Kli_/oa

Although this approach is not a completely con-

sistent treatment of the induced flow, since it

does not give an exact harmonic balance of the

blade flapping and thrust equations, it yields

results which are nearly the same as those ob-

tained from momentum theory. 2



The practical use of Eq. (35) is somewhat

limited because of the inaccuracies of momemtu_

theory in forward flight, but a 7* approach is

nevertheless a valuable conceptual tool for under-

standing the effects of induced flow. In particu-

lar, Eq. (35) shows that one effect of induced

flow perturbations is to decrease the effective

Lock nmaber (i.e. t decrease the aerodynamic ef-

fectiveness). This decrease is most pr_onounced at

lowvalues of v (i.e., low p and e ) and low

values of m. For example, rotor roll moment is

plotted in Figure 1 for two values of 0 and com-

pared with the value from elementary theory

(steady induced flow only, induced flow perturba-

tions neglected, equivalent to llm O ÷ = ). The

curves for O " O, 0.05 result in values of roll

moment well below the elementary value.

_W .05 O

,<o,,///

//S

I I I

0 .I .2 .3 .4 .5

Qs, rod

F_rel. Effect of induced flow on steady rotor

response in hover, _ = 0, _ - 0,

O = 0.i, a = 2_, p = m.

The effect of induced flow i8 most pro-

nounced in the response derivative (the slope of

the response curve at Bs = 0). For p =-, the

derivative is given by

"Y:I <">/a Os 0 -0 = - _ Y

S

indlcatln8 that 7*/7 < I results in a reduction

of the roll moment response (or control power)

from the elementary value. When the rotor is in

hover with no lift (v = 0), a quasi-steady per-

turbation of e 8 (m = 0) results in no response

because of the sere slope of the curve in Figure

I. The mathematical Justification for the van-

ishiug response derivative can be seen in Eqs.

(35) end (36). With _ mv " 0, 7*/7 and the
response derivative must equal zero. As _ in-

creases, however, _ and v incresee so that

7*/7 approaches unity and the derivative ap-

proaches -1/16, as illustrated In Figure 2. With-

in the practical range of thrust coefficients,

however, the response derivative never recovers

more than about 80 percent of the elmmntery

value. Eq. (35) also inpli_ that tncresstnS ad-

vance ratio (which increases v) will result in a

partial recovery of 7*/7 (and of tha response

derivative). This recovery is evident in

-.06

- .04

-.02

I_CED FLOW

PERTI_BATI(_S \lira -- co

Figure 2.

I I I I

0 .I .2 .3 .4

I l I I

0 .O5 .10 .12

I I I I

O .i .2 .3

CT/O"

Effect of induced flow on steady rotor

response derivatives in hover, _ = 0,

w = O, o = 0.i, a = 2_, p = ®.

Figure 3, where the roll response is given versus

p; but no more than 90 percent of the elementary

value is reached in the practical range of thrust

and advance ratio.

-'i°F NOINDUCEDFL(_V

-.08

_-.06

.15

V I I I I I I

0 .I ,2 .3 .4 ,5 .6

Figure 3. Effect of induced flow on steady rotor

response derivatives in forward

flight, w = 0, a = 0.i, a = 2_, p - =.

The unsteady terms (apparent inertia K_)

also bring Y*/7 closer to unity, as seen b_ the

role of K l in Eq. (35). This recovery with fre-

quency is illustrated in Figure _, where, as Q}

becomes large, the response derivative approaches

the elementary value of -1/16. The rate at

which the response approaches -1/16 is dependent

upon the masnitude of the apparent inertia KI.

Large values of KI result in a rapid return to

the alenentary value, and Ball values of KI re-

sult in a slow return. For KI - 0.1132 and

,., < 0.3, the unsteady terms provide only small

contributions to the response. Thus, the quasi-
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Figure 4. Effect of induced flow time constant on

rotor frequency response derivatives,

p = 0, o = 0.i, a = 27, p = _,

_= _ = 0.05.

steady theory (with K I = O) would be adequate in

this range. In the frequency range 0.3 < m <

1.0, the unsteady terms have a more significant

effect. Above m = 1.2, the total effect of in-

duced flow diminishes so that the elementary

theory and the unsteady theory give similar re-

sults; but the quasi-steady theory (with K I = 0)

is in considerable error in this region.

The frequency range in which unsteady in-

duced flow is important_is also dependent upon the

thrust or mean inflow v as shown in Figure 5.

For low values of v, the unsteady effects domi-

nate at low frequencies; and for large values of

_, the unsteady effects are delayed into the

higher frequencies. This effect is implicit in

Eq. (35) and is a direct result of the inverse

dependence of_time constant upon v, Eq. (31).

Thus, a low v implles a slow induced flow re-

sponse; and a high v implies a rapid induced

flow response. Equation (35) shows that advance

ratio (which also increases v) has a similar ef-

fect on the induced flow behavior. It follows

that the relative importance of the unsteady and

quasl-steady nonuniform induced flow terms de-

pends upon both the rotor operating conditions

and the frequency range of interest.

In Figure 6, the relative importance of

these terms is presented qualitatively through a

chart of the operating regimes in which (for no

induced flow or quasi-steady induced flow) [Y*I

differs by less than 10 percent from the unsteady

value. This is a subjective criterion and is

merely intended to illustrate the trends with

thrust, advance ratio, and frequency. Four

regions are defined: (i) at high w and v,

induced flow effects are small and either the

elementary or quasi-steady approximation is ade-

quate; (ii) at high _ and low v, although in-

duced flow effects are small (no induced flow

being a good approximation), the quasi-steady

o
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Figure 6. Regions of validity for steady (no

induced flow perturbations) quasi-

steady (K I = Km = 0), and unsteady

(K I = 0.I132, K m = 0.8488) induced

flow models based on y*, Eq. (35),

o = 0.i, a = 2_.

theory alone will be in error; (lii) at low w

and high v, the opposite is true (i.e., the

quasi-steady nonuniform theory is required, where-

as neglecting induced flow results in error); and

(iv) for low _ and v, complete unsteady theory

is required.



Comparison of Theory and Experiment,

The experimental data used in the following
correlations were obtained with a 7.5-ft-dl_leter

himKeless rotor model tested in the USAAH_L-_mes
tunnel. II The model conflguzatlon and test

conditions covered a wide range of parameters.

The results included here are for p = 1.L5 and

advance ratios from 0.0 to 0.6.

Elastic Blade Bendin 6

In Fig. 7, experimental values of roll mad

pitch moments due to 8 s are eoeq_ared with theo-

retical results which are calculated neglectin8

induced floe perturbations. Two sets of theoz 7

are presented. The first theory eaploys a rigid

centrally-hlnE___, b!_Ade wlth root spring to model

the elastic blade bending, and the second theory

uses a similar model, except that hinge offset is

allowed. The largest differences between the two

theories occur near resonant frequencies, i.e.,

= 0.15, 1.15. (The primary effect of mode

shape is aerodynamic, Eq. (8); it causes domi-

nance at resonance.) A surprising element in

Figure 7 is that the centrally hinged model gives

closer agreeaent with the high frequency response

than does the hinge offset model. This reversal,

however, is not a consistent trend in the data

and may be somevhat coincidental.
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Figure 7. Comparison of experimental data with

rigid blade approximations without

induced flow, p = 1.15, 7 = 4.25,

B " 0.97, e.pc = 0.25, _ = 0.60.

Similar frequency response comparisons have
been made when the blade is modeled by one or two

of the rotating elastic mode shapes. When

p < 0.8 and ,._ is at least once-per-revolution

below the second flap frequency, the one- and two-

mode calculations are within a few percent of the

hinge-offset results. At higher advance ratios

and frequencies, the effects of second-mode bend-

ing can become significant; but in the range of

operating conditions considered here, a single ro-

tating mode is sufficient to model the blade.

Three major types of discrepancies between

theory and experiment which are found in Figure 7

cam_t be explained in terms of flapping mode shape

effects. The first is the difference encountered

at frequencies near one and two per revolution.

This difference may be expla/ned by the fact that

the lead-lag frequency of this configuration is

near two per revolution, causing resonance at these

frequencies. The second discrepancy is the irregu-

larity in the pitch response at u = 0.6. Here, a

natural frequency of the rotor support stand is

being excited and contaminates the data. II The

third discrepancy is found at _ < 0.6, and will be

shown to result from unsteady inflow perturbations.

Effect of Induced Flow In Hover

The low-frequency hover data provide some in-

sight into the effects of unsteady induced flow.

In Figure 8, rotor roll and pitch its versus

0 are presented. The experimental results are

fs _ = 4", _ = 0.03. The theoretical results ar_

calculated using the actual blade rotating mode

shape as a generalized coordinate and using three

different representations of the induced flow. The

first representation is the el_entary model, which

completely neglects induced flow perturbations.

The second representation is quasi-steady momentum

theory, which neglects the apparent inertia

(KI - 0), assuming that nonuniform induced flow

perturbations instantaneously follow the blade dy-

namics. The third representation is unsteady mo-

mentum theory, which gives a time lag on the in-

duced flow Perturbations. (The empirical model is

not applicable in hover.)

A comparison of theory and experiment reveals

that the el_,entary theory is unsatisfactory below

u = 0.6, failing to reproduce even the qualitative

character of the data. On the other kand, the

theories which include induced flow perturbations

account for most of the important features of the

response. The loss of aerod_a=LiC effectiveness,

which is a result of induced flow perturbations,

causes a decrease in the excitation forces and an

overall decrease in the response. But the loss of

aerodynamic effectiveness also lowers the blade

damping, causing a resonant peak effect near the

blade natural frequency (with p - 1.15, ,._- 0.15).

The effect of the unsteady induced flow terms

is also evidenced in Figure 8. The major contri-

bution of K I is the determination of how rapidly
with _ the aerodynamic effectiveness returns to

the elementary value. Above _ = 0.6, the theo-

retical value of KI gives the proper amplitude
and phase for the hub moments, while the quasi-

steady theory (K I = 0) fails to return to the con-

ventional value and does not agree with the data.

Below _ - 0.6 the comparison is less clear. In

the roll-moment phase and amplitude, a K I less

than 0.1132 would give better correlation than

does this theoretical value. In the pltch-moment

response, however, a smaller K I would give worse

correlation than does K I = 0.1132. Further work

would be necessary to determine if this effect is

due to experimental difficulties (such as reclr-

culation) or to an actual deficiency in the in-

duced flow model.
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Figure 8. Rotor response to cyclic pitch in

hover, p = 1.15, 7 = 4.25, B - 0.97,

epc 0.03, momentum theory, single_= _ 0=.25, _ ffi O, oa = 0.7294,

rotating mode.

In Figure 9, rotor roll and pitch moments

versus _ are presented for the same test condi-

tions as in Figure 8. Data are presented for

shaft excitations in both roll and pitch, since

in hover the response to these controls is

ideally symmetric. A comparison of the two sets

of data gives an indication of the experimental

error due to test stand dynamics (and possibly

recirculation). Although the data are question-

able for _ > 0.3, the lower frequency data sub-

stantiate three of the observations made from

Figure 8. First, the elementary theory is quali-

tatively inaccurate for amplitude and phase re-

sponse. Second, a ma_or effect of induced flow

is a resonant peak effect near _ - 0.15. Third,

K I < 0.1132 would give better correlation than

the theoretical value at low _. Figure 9 also
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Rotor response to hub motions in hover,

p - 1.15, y • 4.25, B = 0.97,

_pc ; 0,25, _ - O, oa = 0.7294.
• 0.03, momentum theory, single

rotatiu$ mode,

shows that although induced flow decreases the

blade damping, it can actually increase the rotor

pitch/rate damping = -Re[a(CM/Oa)/a_] and also

increase the rotor pitch/roll coupling

= -Re[a(CL/ua)/a_]. The damping and coupling can

be found by dividing the plotted curves by

-i_, d = i_, which is approximately equivalent to

taking the slope of the plotted curves with a 90-

degree shift in phase angle. For this particular

configuration, the damping and coupling are in-

creased by induced flow effects, indicating that

induced flow perturbations can be important in

coupled rotor/fuselage dynamics.

Effect of Induced Flow in Forward Flight

In the next three figures, experimental data

at high-advance ratio (_= 0.51) and very low lift

(8 = 0.5 ° ) are compared with theory using three

induced flow descriptions. The first description

is an analysis which neglects induced flow pertur-

bations, the second description is the empirical

model of Reference 2 with no time lag (quasi-

steady, K I - Km = 0), and the third description

is the empirical model of Reference 2 adapted to

the unsteady case according to Eq. (34) (with the
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Figure i0. Rotor response to collective pitch in

forward flight, p - 1.15, 7 " 4.25,

B = 0.97, epc ==0.2_, g = 0.51,
oa - 0.7294F _ _ O, single

rotating mode.

theoretlcal values of K I and Km). The first

comparison of theory and experiment is shown in

Figure I0 for the roll- and pitch-moment response

due to 8 o. The elementary theory predicts a
roll moment of 0.017 at _ - 0 and a near-zero

crossing (amplitude - 0, phase angle discontinu-

ous) at _ - 0.4. The data, however, displays a

much lower steady value and completely avoids the

zero crossing. The unsteady and quasi-steady

ampizical models provide a fairly accurate

description of this behavior, showing quantita-

tive agreement with phase and magnitude for

< 0.6. For the pitch moment derivative, the

empirical models predict the qualitative (but not

the quantitative) aspects of the reduction in

moment (from the conventional value) due to

induced flow.

I0



Another comparison of theory and experiment

is shown in Figure ii for the roll- and pitch-

m_ent response due to 0 s. The empirical models

predict a roll-moment derivative which is less

than the elementary value, exhibiting a near-zero

crossing at _ = 0.26. This characteristic is

clearly evident in the magnitude a_d phase of the

data, but it does not appear in the theory
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Figure ll. Rotor response to longitudinal cyclic

pitch in forward flight, p = 1.15,

•y = 4.25, B = 0.97, eoc = 0.25,
= 0.51, oa = 0.7294, _ = _ = O,

single rotating mode.

without induced flow. For the pltch-_ment deriva-

tive, the elementary theory agrees with the data

only for m > 1.2; the quasi-steady theory shows

good correlation for 0 < m < 0.6, and the unsteady

theory gives quantitative correlation at all fre-

quencies.

The third comparison is shown in Figure 12 for

the roll- and pitch-moment response due to O c.
The data show that the roll-moment derivative is

less than the elementary value at w = 0, display-

ing a resonant peak (near _ = 0.15) which is

greater than the elementary value and which is ac-

companied by a 10-degree phase shift. The empiri-

cal models predict the qualitative character of the

resonant peak and quantitative character of the

phase shift. The empirical models also correlate

well with the pitch-moment response, for which the

experiment shows the derivative to he greater than

the elementary value for _ < 0.3 and less than

the elementary value for ,.,> 0.3.

In general, the empirical inflow models show

this same degree of correlation at all advance

ratios considered (p-0.27, 0.36, 0.51, 0.60).

This substantiates one of the qualitative

conclusions of Figure 6. For moderate advance

ratios and _ < 1.0, an appropriate unsteady or

quasi-steady induced flow theory is adequate, but

the theory without induced flow is in consider-

able error. Of course, Figure 6 only implies in

which regions quasi-steady or unsteady terms may

be significant. It does not imply that any par-

ticular quasi-steady or unsteady model will he
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Figure 12. Rotor response to Lateral cyclic

pitch in forward flight, p = 1.15,

: 4.25, B = 0.97, epc = 0._25,
p 0.51, oa = 0.7294; _ = A = 0,

single rotating mode.

adequate. For example, in Figure 13, pitch mo-

ment derivates (as calculated using the theory

without induced flow, unsteady momentum theory,

and unsteady empirical theory) are compared with

the experimental data. The comparison shows that

unsteady momentum theory can be in qualitative

disagreement with the data even though empirical

theory shows good correlation. Even the empiri-

cal model, however, does not show complete quan-

titative correlation; and further refinements in

the induced flow model may be necessary.

Conclusions

I. On the basis of an equivalent Lock number

relation and p = ®, quasi-steady nonuniform in-

duced flow perturbations can have a significant

effect on rotor response throughout the entire

thrust/advance ratio range; but the time lag of
the induced flow is only important at low lift and

low advance ratio.

2. In hover, unsteady momentum theory with appar-

ent mass terms from potential flow provides a

significant improvement in data correlation over

the theory without induced flow perturbations;

but further work is required to refine the induced

flow model.

3. In forward flight and near-zero lift, the

empirical inflow model of Reference 2, whether

used with the unsteady time-lag effect or with-

out the time-Lag effect (quasi-steady), corre-

lates well with most qualitative and some quanti-

tative aspects of the data, while unsteady momen-

tum theory and the theory without induced flow

provide little agreement with the data.

4. A single rotating mode is sufficient for

flappin_ response calculations when p < 0.8 and

when the major excitation frequency is at least

once-per-revolution below the second flapping

frequency.
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